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Introduction 

Migration algorithms are often formulated as the adjoint of a linear forward modelling operator rather 
than the inverse. This is because the adjoint operators are cost effective and robust. This means that 
adjoint operators tolerate imperfections in the data and do not demand that the data provide full 
information (Claerbout, 1995). It is well known that most of the operators used for seismic processing 
are non-unitary (Claerbout, 1992). As a result, migration operators undo the time and phase shifts of 
the modelling operator but do not account for amplitude (Claerbout, 1995). In other words, reflectivity 
obtained from applying migration operator on a seismic data needs amplitude correction. Equations 
(1) and (2) show how seismic data and migrated image are related to reflectivity model and seismic 
data respectively. 
 

(1) 

(2) 

Where d represents the scattered seismic data, m is the reflectivity model, mmig is the migration 
image, and L is the forward modelling operator associated with a specific survey geometry, source 
wavelet, and velocity-density model. The migration operator is the adjoint of the forward modelling 
operator. 
 
Since the migration operator is not unitary; causes the migrated images having distorted amplitudes. 
Also, lateral focusing and defocusing generated by illumination problems due to finite-recording 
aperture and lateral velocity variations, can bias amplitudes in typical migration results. In addition to 
amplitude correction, benefits of least squares migration (LSM) are reduction in migration artifacts 
and an increase in spatial resolution (Nemeth, et al. 1999). LSM finds a reflectivity model mLSM that 
minimizes the 2-norm of the difference between actual seismic data and data obtained from applying 
the modelling operator on mLSM. 
 

(3)  
 

LSM due to the nature of the 2-norm has a tendency to smooth the resulting image. Since the 
reflectivity distribution is sparse and discontinuous, by using a proper regularization in the cost 
function, one can attenuate artifacts and obtain a non-smooth image. 
 
The well known F-K and the phase-shift migration methods are strictly valid only within the 
homogeneous models and layered models, respectively. In this paper, to extend the  F-K domain 
methods to laterally inhomogeneous media, a generalized F-K migration operator (Pai, 1988) and its 
adjoint are used in order to perform migration and modelling operations. In the proposed method, the 
downward continuation is accomplished, not using plane waves individually as in the F-K or in the 
phase-shift method, but by employing the whole spectrum of plane waves simultaneously. In the 
following section the generalized F-K method is discussed. Then sparse regularized LSM is proposed 
and finally the results and conclusions are presented.  

Methodology 

First of all we start from wave equation and extend the F-K migration method to laterally variant 
velocity fields. 

Generalized F-K Migration Method 

The method is a generalization of the F-K and the phase-shift methods, valid in arbitrarily varying 
models. As mentioned above, in this method whole spectrum of plane waves are simultaneously used 
in order to downward continue the wave filed. Starting from 2-D wave equation, applying the Fourier 
transform over time axis gives: 
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(4) 

 
Since velocity has a functionality of x, it should be noted that the Fourier transform of equation (4) 
with respect to x requires convolving the Fourier transform of the wave field and the Fourier 
transform of the velocity dependent term. In addition to taking all the plane waves in to account, we 
use matrix representation of the 2-D Fourier domain wave equation: 
 
 

(5)  
 
 
 
 

(6) 
 
 
In the above equations si’s are the Fourier transform components of the square of slowness at depth z. 
after reordering some terms of the above equation we get: 
 
 

 (7) 
 
where 
 
 

(8) 
 
 
Using definitions in equation (8), the one-way downward wave equation can be obtained as: 
 
 

(9) 
 

 
 
The downward continuation equation and the algorithm for obtaining the downward continued image 
are presented below. Further information about generalized F-K migration can be found in Pai (1988). 
 

(10) 
 

In equation (10), u(zn) is the upcoming wave at depth level zn. Steps required for downward 
continuation using generalized F-K migration method is proposed below: 

1) Start with zero-offset seismic data recorded at the earth’s surface. 
2) Take the Fourier transform of seismic data with respect to t and x. 
3) For each depth step, calculate the downward continued version for all frequency components. 

Then sum all the downward continued frequency components. 
4) Take the inverse Fourier transform of the the result with respect to x. 

 

Sparsity Promoting Least Squares Migration 

As mentioned in the introduction, for robustness, typical migration algorithms use the adjoint of 
modelling operator to perform migration. Usually the migration operator is not unitary. So the 
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migrated image is a distorted version of the reflectivity model. Based on the equations (1) and (2), it 
could be concluded that the distortion function is Hessian matrix as in equation (11). 
 

 (11) 

LSM removes the effect of Hessian matrix by finding a reflectivity model that minimises the 2-norm 
of difference between zero-offset data and data obtained by applying modelling operator on the 
reflectivity model. 

 (12) 
 

Since reflectivity model is non-smooth and sparse, by imposing a sparsity constraint on the 
reflectivity model one can reach a model with higher resolution and less artifacts. The LSM due to the 
nature of the 2-norm, tries to distribute the error on all components and smoothes the resulting image. 
Therefore we add a regularization term to equation (12) in order to make the final image non-smooth.  
The 1-norm is used to achieve a sparse structure for the reflectivity. 

 (13) 

By solving the above optimization problem using Basis Pursuit Denoising (BPDN) (van den Berg and 
Friedlander, 2008) we obtain a sparse reflectivity model that fits the zero-offset seismic data. 

Examples  

This method is tested on a synthetic reflectivity model shown in figure 1. There are 100 traces, 
separated by 1 meter. The wavelet width is four time divisions, each time division being 0.003 
seconds, with a total of 100 time divisions shown. The reflectivity amplitude is one on the reflectors 
and zeros everywhere. The velocity model for the reflectivity model is shown in figure 2. A synthetic 
data has been obtained by applying the modelling operator that discussed above, on the synthetic 
reflectivity model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As it is seen, the velocity model has strong lateral variations. Figure 3 shows the obtained synthetic 
data, in other words, the result of applying the modelling operator on reflectivity model. Figure 4 is 
the result of applying the generalized F-K migration operator on the synthetic data. Figure 5 illustrates 
the result of applying the LSM method on the synthetic data. 
By comparing figure 4 and figure 5, it can be concluded that both methods had correctly positioned 
the reflectors but the LSM algorithm has managed to obtain an image with much higher resolution. In 
addition, amplitude distortion has been taken into account by LSM in contrast to generalized F-K 
migration. There are artifacts in figure 4 but in figure 5 the amplitudes is non-zero around the 
reflectors and zero everywhere. 

Figure 1 The Synthetic reflectivity model. Figure 2 The Synthetic velocity model. 
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Conclusion 

In this paper we proposed a sparsity based migration using the generalized F-K migration method that 
uses:   

1) All the plane waves together in order to compensate for laterally velocity variations.  
2) 1-norm based least squares migration to obtain sparse and non-smooth reflectivity model.  

The efficiency of the method was tested on synthetic seismic data. 
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Figure 3 Synthetic data. Figure 4 The result of applying the 
generalized F-K migration on figure 3. 

Figure 5 Sparsity Promoting LSM. 


